Section Formula - MATHEMATICS

Given two end points of line segment A(x1, y1) and B (x2, y2) you can determine the coordinates of the point P(x, y) that divides the given line segment in the ratio m:n using Section Formula  given by 1. 
The midpoint of a line segment divides it into two equal parts or in the ratio 1:1. The midpoint of line segment joining the points (x1, y1) and (x2, y2) is 2.
The line joining the vertex to the midpoint of opposite side of a triangle is called Median.  Three medians can be drawn to a triangle and the point of concurrency of medians of a triangle is called Centroid denoted withG.
If A(x1, y1), B(x2, y2) and C(x3, y3) are vertices of a triangle then its centroid G is given by 3. The centroid of a triangle divides the median in the ratio 2:1.
section formula, ratio, ratio m:n, given ratio, line segment dividing, point dividing the line segment in the ratio, internally ratio, coordinates of P(x, y),, 2:1 ratio
midpoint formula, midpoint, equal ratio, 1:1 ratio, , equi-distance
The midpoint of line segment joining the points (x1, y1) and (x2, y2) is 8.
centroid, point G, , 2:1 ratio, point of intersection , medians, point of concurrency, three medians
Centroid of triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is 10. Centroid of a triangle divides the median in the ratio 2:1.

GAUTHAM RAJESH

AUTHOR OF THIS POST.